Virtual superclass for Bernstein functions with nonzero Lévy density
Source:R/s4-LevyBernsteinFunction.R
LevyBernsteinFunction-class.RdA virtual superclass for all Bernstein functions which can represented by a Lévy density (no drift or killing rate). That means that there exists a Lévy measure \(\nu\) such that $$ \psi(x) = \int_0^\infty (1 - e^{-ux}) \nu(du) , x > 0 . $$
Details
Evaluation of Bernstein functions with Lévy densities
For continuous Lévy densities, the values of the Bernstein function are
calculated with stats::integrate() by using the representation
$$
\psi(x)
= \int_{0}^{\infty} (1 - \operatorname{e}^{-ux}) \nu(du), \quad x > 0 ,
$$
and the values of the iterated differences are calculated by using the
representation
$$
(-1)^{j-1} \Delta^{j} \psi(x)
= \int_{0}^{\infty}
\operatorname{e}^{-ux} (1 - \operatorname{e}^{-u})^j \nu(du) ,
\quad x > 0 .
$$
For discrete Lévy densities \(\nu(du) = \sum_{i} y_i \delta_{u_i}(du)\), the values of the Bernstein function are calculated by using the representation $$ \psi(x) = \sum_{i} (1 - \operatorname{e}^{-u_i x}) y_i, \quad x > 0 , $$ and the values of the iterated differences are calculated by using the representation $$ (-1)^{j-1} \Delta^{j} \psi(x) = \sum_{i} \operatorname{e}^{-u_i x} (1 - \operatorname{e}^{-u_i})^j y_i, \quad x > 0 . $$
See also
getLevyDensity(), calcIterativeDifference(),
calcShockArrivalIntensities(), calcExShockArrivalIntensities(),
calcExShockSizeArrivalIntensities(), calcMDCMGeneratorMatrix(),
rextmo(), rpextmo()
Other Bernstein function classes:
AlphaStableBernsteinFunction-class,
BernsteinFunction-class,
CompleteBernsteinFunction-class,
CompositeScaledBernsteinFunction-class,
ConstantBernsteinFunction-class,
ConvexCombinationOfBernsteinFunctions-class,
ExponentialBernsteinFunction-class,
GammaBernsteinFunction-class,
InverseGaussianBernsteinFunction-class,
LinearBernsteinFunction-class,
ParetoBernsteinFunction-class,
PoissonBernsteinFunction-class,
ScaledBernsteinFunction-class,
SumOfBernsteinFunctions-class
Other Virtual Bernstein function classes:
BernsteinFunction-class,
CompleteBernsteinFunction-class
Other Levy Bernstein function classes:
AlphaStableBernsteinFunction-class,
CompleteBernsteinFunction-class,
ExponentialBernsteinFunction-class,
GammaBernsteinFunction-class,
InverseGaussianBernsteinFunction-class,
ParetoBernsteinFunction-class,
PoissonBernsteinFunction-class