Skip to contents

Bernstein functions are stable under convex combinations, i.e. if \(\psi_1, \ldots, \psi_n\) are Bernstein functions and \(c_1, \ldots, c_n > 0\) are positive real values, $$ x \mapsto c_1 \psi_1(x) + \cdots + c_n \psi_n(x) , x>0, $$ is also a Bernstein function.

Slots

coefficients

Numeric vector of positive real values.

points

List of Bernstein functions.

Examples

# Create an object of class ConvexCombinationOfBernsteinFunctions
ConvexCombinationOfBernsteinFunctions()
#> An object of class "ConvexCombinationOfBernsteinFunctions"
#> 	 (invalid or not initialized)
ConvexCombinationOfBernsteinFunctions(
  coefficients = c(0.2, 0.5, 0.1),
  points = list(
    LinearBernsteinFunction(scale = 0.2),
    ConstantBernsteinFunction(constant = 0.5),
    AlphaStableBernsteinFunction(alpha = 0.5))
)
#> An object of class "ConvexCombinationOfBernsteinFunctions"
#> - coefficient: 0.2
#> - point:
#> 	An object of class "LinearBernsteinFunction"
#> 	- scale: 0.2
#> - coefficient: 0.5
#> - point:
#> 	An object of class "ConstantBernsteinFunction"
#> 	- constant: 0.5
#> - coefficient: 0.1
#> - point:
#> 	An object of class "AlphaStableBernsteinFunction"
#> 	- alpha: 0.5